BOUNDARY LAYER OF TWO-TEMPERATURE PLASMA
ON ELECTRODES OF MHD CHANNEL WITH CROSSED
ELECTRIC AND MAGNETIC FIELDS FOR LARGE VALUES
OF THE HALL PARAMETER

L. E. Kalikhman

The rational organization of the cycle in MHD devices requires, first of all, knowledge of the laws of
interaction of the plasma stream with the electrodes. Therefore the problem of the plasma boundary layer
on the electrodes of the MHD channel is of considerable practical interest. As a rule, there is consider-
able rarefaction in accelerator channels and the magnetic field intensity is rather high. This leads to the
need for accounting for the Hall current fields and the influence of the Hall parameter on the plasma trans-
port properties. Moreover, discontinuity of the electron temperature usually occurs in plasma accelerators.

Existing studies of the MHD boundary layer have concerned individual particular questions or the
solution of simplified problems [1-3]. The literature does not present the complete system of equations for
the boundary layer on the electrodes of a compressible magnetized two-~temperature plasma.

In the following we present the boundary layer equations for the indicated general case. We consider
only a completely ionized quasi-neutral plasma for small values of the magnetic Reynolds number.

We direct the x axis along the conducting wall, the y axis along the normal to the wall, and the z axis
perpendicular to the x and y axes. Let the external magnetic field be characterized by the components
Bx = By = 0, B, = B and the electric field which develops in the plasma by the components Ey, E

y y°
The system of MHD equations for a two-dimensional plasma stream will be [4]
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Here u and v are the projections of the mass-average plasma velocity on the coordinate axes; n is
the number density of electrons or ions; p is the total pressure; Pe and p; are the partial pressures; T, and
T; are the electron and ion temperatures; m and mg are the ion and electron masses, respectively,
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The current density projections are given by the generalized Ohm's law

e 0
Jy-—c{ L (Bt oB 45 ‘;’;)Jreﬁ(j—j T L 20 (7)

Here o is the plasma conductivity across the magnetic field and A are functions of the Hall parameter
Hg for the electrons. The elements of the viscous stress tensors of the ions and electrons have the form
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The projections of the electron and ion thermal flux vectors are
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Here Hg and H; are the Hall parameters, wg and wj are the Larmor frequencies, and 7§ and 7, are
the mean times between collisions of ions with one another and collisions of electrons with ions.

The system (1)~(5) of gasdynamic equations is supplemented by the following relations:
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The equations can be reduced to dimensionless form in order to compare individual terms. We
select the scales: longitudinal dimensions x;, transverse dimensions y;, longitudinal and transverse velo-
city components u, and v,, respectively, concentration ny, temperatures T, pressures p, = nkT,, electric
field intensity components E,, magnetic field By, times between collisions T4y and 7ip. The scales for the
Hall parameters are

eBo
m
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The scales for the functions Ay are determined by (11) in terms of the scale Hgg. The scales for the
gas kinetic quantities o, 14y, Neps Mig,a0d Agy are connected by (10) with the scales ny, Ty, Teg, Tigs Hegs Higs
and AIO"

In transforming the equations to dimensionless form we introduce the following similarity criteria:
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Here Rg, Rj are the electron and ion Reynolds numbers, respectively; Pg, Pj are the electron and 1on
Prandtl numbers; & is the electric field criterion; K is the loading criterion; M is the Mach number; mP
is the diffusion Mach number, in which the current scale is 0yE;. For y, and v, we take the relations
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Then (1) in dimensionless form with account for (7) and (8) has the form (the overscore denotes quan~
tities referred to their scales)
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Let us examine the case in which the Reynolds criterion for the ions is much larger than the other
dimensionless criteria and their combinations M, mP » &, K, Hjg, Hgg, Agg/Aqy, and so on, and we assume
that it has been possible to select the scales so that all the dimensionless quantities and their gradients are
of order unity. Then in (15) we can neglect terms containing the factors 1/vRj and 1/R; in comparison with
the terms containing unity as a multiplier, and also terms containing unity as a multiplier in comparison
with similar terms containing the factor ‘/_; Dropping the corresponding terms and returning to dimension-
al variables, we obtain
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where the transverse current density is
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Proceeding similarly with (2), with account for (6) and (8) we obtain
0 s {x Aw 1 9B, = A 0T.\ MP

B, (4, gL e A, G0 T ) % (18)

369



Consequently, the pressure can be assumed constant across the boundary layer if the criteria com-
bination is sufficiently small. Here S is the magnetic interaction parameter.
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After suitable simplifications the ion energy equation takes the form
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In view of the importance of the electron energy equation, we write it out in complete dimensionless
form
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We assume that the criterion Rq is sufficiently large that
RP, 2Ry, R,>HuoVER, Ho<VE (22)
In this case the Hall numbers for the electrons can therefore be large but not infinite,

Neglecting terms containing a factor of unity or vRj in comparison with analogous terms containing
the factors VR and Rj, respectively, with account for inequalities (22), returning to dimensional variables
and introducing the heat capacity cp, we obtain
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is the axial (Hall) current density, and
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§
p / | is the density of the current transported by enthalpy in the
v transverse direction.

The dimensionless form of the aerodynamic equations
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One of the possible methods for integrating the system
8r¢ of boundary layer equations for the two-temperature plasma
is the method of finding the locally self-similar flows, in
which the dependence of all the quantities on the longitudinal

(27)

4 coordinate is accounted for through variation of the outer flow
( parameters. We introduce the independent variables
L J
I
// 8, _ _
g 1 - T, VR ¢
. g:Sde, _ VA Sﬁd‘
Fig. 3 D o £ V% ) y
77 _ U, N oy ULmnSO
(subscript 0 applies to the initial section x = 0) and the functions
r u _ Te . Ti
f=g, %= =7
We examine only an isothermal accelerating outer flow with the constant parameters
T;, = const, T, = const, p = const, E,, = const, j, = const, jx, = 0
Then (16), (20), and (23) reduce to the form
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Theproblem's similarity criteriawill be the quantities
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We note that the magnetic interactionparameter S is connected with the diffusion (current) Mach
number by the relation
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Theproblem's boundary conditionshave the form
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As an example Figs. 1-3 show the distributions u/Ug, ®1, and @ in the boundary layer of a two-tem-

perature fully ionized argon plasma for §{ = 0, obtained as a result of numerical calculation on an M-20
computer with the following values of the defining parameters

M= 245, K =1.086, T, = 0.833, T;, = 0.167
R, = 1.565-10% R, = 3.61-101, P, = 0.619, P, = 1.925-107
Hio = 0.265, He = 438, ©,,'= 0.15, @;, = 0.15
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Certain of the peculiarities observed in the resulting profiles are apparently associated with the
behavior of the transport properties in the strong magnetic field.
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